Development and Characterization of Reference Standards to Support Analysis of Charge Variants

Niomi Peckham Director, Biologics Pipeline Development USP Biologics, Rockville Maryland, 2022

September 18-21 Portland, OR

Outline

- Introduction to USP
- Collaborative study of USP mAb charge variants using cIEF and icIEF
- Charge variants during real-time stability and forced degradation
- icIEF characterization of 'coformulated' USP mAbs
- Ongoing characterization by CE-MS and MAM

Collaborative study of USP mAb standards using cIEF and icIEF

- Charge variants impact antigen and FcR binding, immunogenicity and stability
- Isoelectric point (pl) values for identity
- Charge profile for identity
- Quantitation for purity (quantitative or semi-quantitative)

Collaborative characterization of mAbs

	USP mAb 001, monoclonal IgG1	USP mAb 002, monoclonal IgG1	USP mAb 003, monoclonal IgG1
USP Catalog #	1445539	1445547	1445595
CAS#	174722-31-7	216974-75-3	912628-39-8
MW	~147,000 Da	~150,000 Da	~146,000 Da
Package size	200 µl solution (2 mg protein content)	200 µl solution (2 mg protein content)	200 µl solution (2 mg protein content)

- Released in 2020 following characterization in 4 laboratory collaborative study
- "Performance standards" with no compendial use or reference in USP-NF
- USP's compendial monoclonal standard to be used in method chapter <129> is USP Monoclonal IgG System Suitability RS

Certificate values

- ▶ SEC-HPLC chromatogram, average values
- cIEF method and electropherogram, average values
- iclEF method and electropherogram , average values
- CE-SDS (reduced and non-reduced) electropherogram, average values
- Glycan CE-LIF electropherogram
- Glycan LC-FLR-MS chromatogram
- Intact mass analysis deconvoluted spectrum, theoretical mass

Charge variant collaborative study

- Total of five participating laboratories
 - ▶ Three for cIEF, all using PA800 Plus
 - ▶ Three for icIEF, using iCE3 and Maurice
- USP optimized methods based on manufacture's recommendations
- Certificates include method summary, electropherograms, and average values
- Technical note with discussion and more information

https://www.usp.org/sites/default/files/usp/document/our-work/biologics/cief-icief-tech-note-v6-final.pdf

Typical Electropherogram

USP mAb 001, Monoclonal IgG1 RS

Catalog Number: 1445539
Lot: F11920
Test: Capillary Isoelectric Focusing (cIEF)
Instrument: SciEx, PA800 Plus
Method:
Focus Period 1: 15 minutes, 25,000 V; Focus Period 2: 25 minutes, 30,000 V
Sample Load Duration: 150 seconds
Detector: UV280
Capillary: AB SciEx, Neutral capillary
pl Standards: pl 7.0 and pl 10.0
Carrier ampholyte: Pharmalyte 3-10

This electropherogram is supplied for information only, unless otherwise specified in an applicable monograph or general chapter.

Charge variants determined by cIEF

- Similar charge profiles between labs
- Very consistent inter-lab pl
- Inter-lab standard deviation of species measurements less than ~5% (less than ~ 20% RSD)

Reference		pl			Acidic			Main			Basic	
Standard	Average	Std Dev	%RSD	Average	Std Dev	%RSD	Average	Std Dev	%RSD	Average	Std Dev	%RSD
mAb 001	9.2	0.04	0.5%	32%	2.08%	6.5%	60%	1.34%	2.2%	8%	1.31%	16.5%
mAb 002	7.8	0.03	0.4%	31%	3.09%	10.0%	65%	2.51%	3.9%	4%	0.62%	15.8%
mAb 003	7.7	0.02	0.3%	25%	5.02%	20.1%	55%	4.92%	9.0%	20%	0.71%	3.5%

Note: Main peak pl and % species vary based on capillary condition, reagents, instrument, method, and integration parameters. Values are the average from three labs.

Charge variants determined by icIEF

- Similar charge profiles between labs
- Very consistent inter-lab pl
- Inter-lab standard deviation of species measurements less than ~6% (less than ~20% RSD)

Reference		pl			Acidic			Main			Basic	
Standard	Average	Std Dev	%RSD	Average	Std Dev	%RSD	Average	Std Dev	%RSD	Average	Std Dev	%RSD
mAb 001	9.2	0.10	1.1%	38%	2.72	7.1%	54%	3.04	5.7%	8%	1.36	17.0%
mAb 002	7.9	0.08	1.0%	29%	6.09	20.8%	66%	5.98	9.0%	4%	0.31	7.1%
mAb 003	7.9	0.08	1.1%	20%	2.62	13.2%	62%	2.33	3.8%	18%	0.65	3.6%

Note: Main peak pl and % species vary based on capillary condition, reagents, instrument, method, and integration parameters. Values are from three labs and two instrument models.

Comparison between cIEF and icIEF

Reference Standard	Method	pl	% Main	% Acidic	% Basic
	cIEF	9.2	60%	32%	8%
mAb 001	iclEF	9.2	54%	38%	8%
	Difference	0	6%	-6%	0%
	cIEF	7.8	65%	31%	4%
mAb 002	iclEF	7.9	66%	29%	4%
	Difference	-0.1	-1%	2%	0%
	cIEF	7.7	55%	25%	20%
mAb 003	iclEF	7.9	62%	20%	18%
	Difference	-0.2	-7%	5%	2%

Inter-method precision

- pl difference ≤ 0.2
- % Group differences ≤ 7%

Charge variants during real-time stability and forced degradation

- Real-time stability study under slightly stressed conditions to predict future stability and stability during typical use.
- Forced degradation study to understand the evolution of charge variants as stability indicating attributes.

Real-time stability study

- Real-time stability conditions chosen to reflect typical customer storage and use cases
- Maximum of 6 months

Study design

Stability conditions	2 cycles of freeze and thaw	2 week	1 month	3 month	6 month
-70° (control)			X		X
-20°					X
5°			X	X	X
Ambient		X	X		
2 cycles of freeze-thaw	X				

Outcomes

- mAb 001, 002, 003
 - Similar stability profiles
- SEC-HPLC from <129>
 - Change in impurities below limit of quantitation
- CE-SDS Nonreducing from <129>
 - Change in impurities below limit of quantitation
- iclEF for charge variants

Real-time stability: mAb 001

Treatment	Main peak pl	% Acidic	%Main	%Basic
Control (<-70°C)	9.4	44.1	47.8	8.1
1M @ 5°C	9.4	43.0	49.0	8.0
2W @ Room Temp	9.4	44.1	47.8	8.1
1M @ Room Temp	9.4	44.0	48.2	7.9
2X Freeze Thaw	9.4	43.1	48.9	8.0

Treatment	Main peak pl	% Acidic	%Main	%Basic
Control (<-70°C)	9.4	42.6	49.4	8.0
3M @ 5°C	9.4	44.0	47.9	8.1
6M @ 5°C	9.4	44.1	47.9	8.0
6M @ -20°C	9.4	42.9	49.1	8.1

Forced degradation study

- A forced degradation study was performed to evaluate the charge variants produced by thermal degradation and if the resulting material had potential as a Performance Standard.
- ▶ Samples of USP mAb 001 and USP mAb 002 were held at 25°C, 37°C, and 42°C for 4, 6 and 8 Weeks and analyzed by icIEF (Maurice)

icIEF overlays of degraded USP mAb 001 at -80°C, 37°C, and 42°C for 4 weeks.

icIEF relative percent of Acidic, Basic, and Main species of degraded USP mAb 001 at -80°C, 37°C, and 42°C for 4, 6, and 8 weeks.

iclEF characterization of mixture of USP mAbs

- USP mAbs were used to create surrogate co-formulations and the USP method was used for separation
- Evaluated: Repeatability, Reproducibility, Accuracy, Linearity

icIEF characterization of mixed USP mAb

- Several co-formulated mAbs are under development
- Several examples of cIEF methods to determine charge heterogeneity and antibody ratio for coformulated mAbs have been reported^{1, 2}
- USP mAbs were used to create surrogate co-formulations (mixtures) and evaluated with the USP method
 - mAb 001 pl 9.2
 - mAb 002 pl 7.9
 - mAb 003 pl 7.9

mAb 001 + mAb 002

mAb 001 + mAb 003

^{1.} CEPharm 2021 Poster: Development and Qualification of a cIEF Method to Determine Charge Heterogeneity and Antibody Ratio for Co-Formulated mAbs by Weichen Xu, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, US

^{2.} Charge variants characterization and release assay development for co-formulated antibodies as a combination therapy, M. Cao et.al., MABS 2019

Evaluation of icIEF on mixed USP mAbs

- ▶ 1:1 mixture (mg/mL) of mAbs analyzed by collaborative study method
 - pl, Relative %, and Ratio by total peak area
- Standard curve normalized to 1 mg/mL total protein for Linearity

Parameter	Experimental Design	Results (% RSD)		
		pl	Acidic, Main, Basic %	
Repeatability	n=6 injections	< 0.1%	< 7%	
Reproducibility	6 injections, 3 runs, n=18	< 0.1%	< 5%	

Parameter	Experimental Design	Results
Accuracy (mAb ratio)	7 levels, ratios from 0.7 to 1.65	Recovery 98.1 to 100.7%
Linearity	Theoretical vs Experimental ratio of total peak area	$R^2 = 0.9987$ (Absorbance)

Detection bias (absorbance vs fluorescence)

- Linearity and Accuracy showed mAb specific bias
- Ratio corrected area mAb001/mAb002
 - 0.97 Absorbance, 0.66 Fluorescence
- Ratio corrected area mAb001/mAb003
 - 1.15 Absorbance, 0.84 Fluorescence

Ongoing characterization by CE-MS and MAM

- Characterization of USP mAbs by CE-MS
 - Summary of charge variant data
- Characterization of USP mAbs using MAM
 - Preliminary charge variant data
 - Deamidation results were method dependent

CE-MS characterization of USP mAbs

Native Antibody Analysis (ZipChip by 908 Devices)

- ▶ The ZipChip Native Antibodies Kit with HRN (high resolution) chip
 - Protocol: Boosting Sensitivity for Intact Antibody Charge Variant Analysis
- Thermo Exactive Plus EMR Orbitrap Mass Spectrometer

Charge variant summary

Native Antibody Analysis (ZipChip by 908 Devices)

	mAb 001	mAb 002	mAb 003
		mass in m/z	
Main	147,237.00	149,189.02	145,737.70
Basic			
+1 Lys	147,364.97	149,323.94	145,865.89
+2 Lys	147,490.67		145,993.44
+16 Da Variant	147,253.02		
Acidic			
Deamidation	147,239.95	149,199.22	145,741.08
	147,240.97		
Sialic acid	147,693.64		
	147,853.13		

- MAb 001 Variants in the acidic region mainly appear to be deamidation, sialic acid species, and additional glycoforms that could be more complex branching structures
- mAb 002 one basic variant and one low abundance acidic variant with mass shift of ~1 Da indicative of deamidation
- MAb 003 G0F/G1F is the most abundant glycoform in the main variant, but G0F/G0F is most abundant in the basic variants.

Multi-Attribute Methods (MAM)

- MAM leverages the specificity of mass spectrometry
 - Can assess multiple quality attributes
 - Has been used in place of traditional methods
 - Capillary electrophoresis, cation exchange chromatography, peptide mapping, and glycan analysis

USP Efforts

- 2020 Stakeholder Forum on MAM
- MAM Expert Panel
 - Writing chapter on best practices
- Collaborations with Universities to evaluate utility of MAM
- Initiated development of pre-digested mAb standards
- USP MAM Exchange Community
 - Join at mam.usp.org

Preliminary MAM results for USP mAbs

Charge variants detected by MAM

- Compared data obtained from multiple labs and using multiple digestion methods
- Most results were consistent across labs and conditions
 - Lysine clipping
 - Pyroglutamate
 - Glycosylation
 - Oxidation

Differences in percent of deamidation ranged from undetectable to over 40% depending on reduction/alkylation and digestion conditions

		Relative	Relative % of Modification (USP mAb 001)				
Peptide	Modification	Lab A	Lab B Method 1	Lab B Method 2			
Dantida 1							
Peptide 1	Oxidation	9.60%	9.80%	5.60%			
Peptide 2	Deamidation	14.50%	6.60%	ND			
	Oxidation	ND*	0.10%	0.20%			
Peptide 3	Deamidation	41.80%	28.70%	ND			
	Oxidation		0.04%	ND			
Dontido (
Peptide 4	Deamidation	ND	9.10%	ND			
Dontido F							
Peptide 5	Deamidation	36.20%	10.40%	2.80%			
Peptide 6	Deamidation	9.40%	8.20%	ND			
	Oxidation	ND	1.90%	1.70%			

Summary and Next Steps

- ▶ cIEF/icIEF introduced as new uses for USP mAb 001, 002, and 003 standards
- Real-time stability study completed (6M)
- Forced degradation studies on USP mAbs show increases in acidic variants and decreases in basic forms with time and temperature
- Demonstration of quantitation of forms in mock co-formulation
- Initial characterization of charge variants by CE-MS and MAM
- Next Steps
 - Further characterization of charge variants by CE-MS (ZipChip)
 - Evaluation of lab-to-lab variability for CE-MS
 - Expansion of mAb portfolio to include other isotypes and pls